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Caption probability:
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Candidate captions = Smoothing factor

L(A) =—log | P(DTIQ)
(Q,D+)
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Correct caption

P(D|Q) =

a man sitting on a couch with a dog
a man sitting on a chair with a dog in his lap

dog (1.00) man (0.93) sitting (0.83) couch (0.66)

A woman holding a
camera in a crowd.

Objective:

a baseball player throwing a ball
a pitcher holds his arm far behind him during a pitch

baseball (1.00) ball (1.00) player (1.00) throwing (0.86)



