

From Captions to Visual Concepts and Back

Hao Fang*, Saurabh Gupta*, Forrest Iandola*, Rupesh Srivastava*, Li Deng, Piotr Dollár, Jianfeng Gao, Xiaodong He, Margaret Mitchell, John C. Platt, C. Lawrence Zitnick, Geoffrey Zweig

Overview

We present a novel approach for automatically generating image descriptions using:

- Multiple Instance Learning (MIL) for visually detecting words
- A maximum entropy language model
- Sentence ranking using MERT and a Deep Multimodal Similarity Model (DMSM)

1. Word Detection

Pipeline

2. Sentence Generation

Description

http://arxiv.org/pdf/15	04.07889.pdf is	not available Definition
Attribute	0/1	$ar{w}_l \in ilde{\mathcal{V}}_{l-1}$
N-gram+	0/1	$ar{w}_{l-N+1}, \cdots, ar{w}_l = \kappa$ and $ar{w}_l \in ilde{\mathcal{V}}_{l-1}$
N-gram-	0/1	$ar{w}_{l-N+1},\cdots,ar{w}_l=\kappa$ and $ar{w}_l otin ilde{\mathcal{V}}_{l-1}$
End	0/1	$ar{w}_l = \kappa$ and $ ilde{\mathcal{V}}_{l-1} = \emptyset$
Score	\mathbb{R}	$\operatorname{score}(ar{w}_l)$ when $ar{w}_l \in ilde{\mathcal{V}}_{l-1}$

Predicted word is in the attribute set, i.e. has been visually detected and not yet used. N-gram ending in predicted word is κ and the predicted word is in the attribute set. N-gram ending in predicted word is κ and the predicted word is not in the attribute set. The predicted word is κ and all attributes have been mentioned. The log-probability of the predicted word when it is in the attribute set.

3. Sentence Re-Ranking

Re-rank the *m*-best sentences using Minimum Error Rate Training (MERT). Ranking is based on the following features:

- 1. The log-likelihood of the sequence.
- 2. The length of the sequence.
- 3. The log-probability per word of the sequence.
- 4. The logarithm of the sequence's rank in the log-likelihood. 5. 11 binary features indicating whether the number
- of mentioned objects is x (x = 0, ..., 10).
- 6. The DMSM score between the sequence and the image.

Q = image, D = caption, R = relevance

 $R(Q, D) = \text{cosine}(y_Q, y_D) = \frac{y_Q^T y_D}{\|y_Q\| \|y_D\|}$

Caption probability:

 $\Sigma_{D'\in\mathbb{D}}\exp(\gamma R(Q,D'))$ Candidate captions Smoothing factor

DMSM

Results

todaito	Ablation Study			Human Study		
System	PPLX	BLEU	METEOR	= human	> human	>= human
Unconditioned	24.1	1.2	6.8			
Shuffled Human	-	1.7	7.3			
Baseline	20.9	16.9	18.9	9.9	2.4	12.3
Baseline + score	20.2	20.1	20.5	16.9	3.9	20.8
Baseline + score +DMSM	20.2	21.1	20.7	18.7	4.6	23.3
Baseline + score + DMSM [ft]	19.2	23.3	22.2			
VGG + score [ft]	18.1	23.6	22.8			
VGG + score + DMSM [ft]	18.1	25.7	23.6	26.2	7.8	34.0
Human written caption	-	19.3	24.1			

MS COCO Caption Test Server

	CIDEr-D 1	Meteor	ROUGE-L	BLEU-1	BLEU-2	BLEU-3	BLEU-4
MSR ^[5]	0.925	0.331	0.662	0.88	0.789	0.678	0.567
Human ^[3]	0.91	0.335	0.626	0.88	0.744	0.603	0.471
Berkeley LRCN ^[1]	0.891	0.322	0.656	0.871	0.772	0.653	0.534
Google ^[2]	0.842	0.327	0.649	0.872	0.766	0.648	0.538
m-RNN (Baidu/ UCLA) ^[8]	0.828	0.312	0.647	0.872	0.771	0.654	0.543
MLBL ^[4]	0.752	0.294	0.635	0.848	0.747	0.633	0.517
NeuralTalk ^[6]	0.692	0.28	0.603	0.828	0.701	0.566	0.446
Tsinghua Bigeye ^[7]	0.682	0.273	0.616	0.866	0.756	0.628	0.493

Analysis

	Unique Captions	Seen in Training
Human	99.4	4.8
k-Nearest Neighbor	36.6	100
LSTM / RNN Style	33.1	60.3
Our	<i>4</i> 7 O	30 O

	=	>	>=
	human	human	human
k-Nearest Neighbor	22.1	5.5	27.6
Our	26.2	7.8	34.0

