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Detection Generation

woman, CrOWd, cat, A purple camera with a woman.

. A woman holding a camera in a crowd.
camera, holding,
pU rple A woman holding a cat.




Detection Generation Re-Ranking

woman, CrOWd, cat, A purple camera with a woman. )
camera, hOIding, A woman holding a camera in a crowd. #1 A woman holdlng a

. camera in a crowd.
purple A woman holding a cat.
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Re-rank hypotheses globally

Global vector Global vector

1-D Convolutional neural 2-D Convolutional neural
network for text network for image

A woman holding a
camera in a crowd.

DMSM - Embedding
to maximize similarity
between image and its
corresponding caption

> w

A purple camera with a woman
A woman holding a camerain a
crowd.

A woman holding a cat.

Sentence and image level
features

MERT to optimize
for BLEU on val set
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Return best hypothesis




Results

Val c4 Test c40
System BLEU4 METEOR BLEU METEOR CIDEr-D
Our 25.7 23.6 56.7 31.8 92.5
G-RNN 25.7 22.6 - - -
Our + G-RNN 27.3 23.6 60.1 33.9 93.7
MSR = Our

MSR Captivator = Our + G-RNN
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Results

Val c4 Test c40

4-5th by

System BLEU4 METEOR BLEU METEOR CIDEr-D Jutomatic
metrics,

Our 25.7 23.6 56.7 31.8 92.5 Tied 1st

G-RNN 25.7 22.6 ; i ; by human

evals
Our + G-RNN 27.3 23.6 60.1 33.9 93.7 <=
1-2st by
automatic
metrics
MSR = QOur

MSR Captivator = Our + G-RNN
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Novelty in Captions?

Val c4
System BLEUA METEOR _ oniaue Seen in
Captions (%) Training (%)
Human 99.4 4.8
Our 25.7 23.6 47.0 30.0
G-RNN 25.7 22.6 33.1 60.3
Our + G-RNN  27.3 23.6 28.5 61.3
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Novelty in Captions?

Val c4
System BLEU4 METEOR _ onigue Seen in
Y Captions (%) Training (%)
Human 99.4 4.8 Foraset of 20K
images, only 6.6K
Our 25.7 23.6 47.0 30.0 unigque strings were
emitted
G-RNN 25.7 22.6 33.1 60.3 ¢
Our + G-RNN 27.3 23.6 28.5 61.3

Ranks 7th out of 16
on leaderboard
according to

k-NN 26.0 22.5 36.6 100 €

automated metrics

1-NN 11.2 17.3 - 100

and human evals



BLEU

Analysis

BLEU Scores Based on Visual Overlap
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Least Visual Overlap Most Visual Overlap

Our Our+GRNN ==Nearest Neighbor G-RNN

mmitchell MSR_Captivator NearestNeighbor



Interpretability

a man sitting on a couch with a dog
a man sitting on a chair with a dog in his lap
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a baseball player throwing a ball
a pitcher holds his arm far behind him during a pitch

throwing (0.86)
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Jpeople (0.89) standing (0.71) group (0.68) doughnuts (0.67)

4 25

a group of people standing in front of doughnuts
boxes of donuts orange juice and other snacks are sitting out for empl
oyees
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