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Figure 1: An illustrative example of our pipeline.

When does a machine “understand” an image? One definition is when
it can generate a novel caption that summarizes the salient content within an
image. This content may include objects that are present, their attributes, or
relations between objects. Determining the salient content requires not only
knowing the contents of an image, but also deducing which aspects of the
scene may be interesting or novel through commonsense knowledge.

This paper describes a novel approach for generating image captions
from samples. Previous approaches to generating image captions relied on
object, attribute, and relation detectors learned from separate hand-labeled
training data [22, 47]. Instead, we train our caption generator from a data
set of images and corresponding image descriptions.

Figure 1 shows the overview of our approach. We first use Multiple
Instance Learning to learn detectors for words that occur in image captions.
We then train a maximum entropy language model conditioned on the set
of detected words and use it to generate candidate captions for the image.
Finally, we learn to re-rank these generated sentences and output the highest
scoring sentence.

Our evaluation was performed on the challenging MS COCO dataset
[4, 28] containing complex images with multiple objects. Examples results
are shown in Figure 2. We use the multiple metrics and better/worse/equal
comparisons by human subjects on Amazon’s Mechanical Turk to evaluate
the quality of our automatic captions on a subset of the validation set.

We also submitted generated captions for the test set to the official
COCO evaluation server (results in Fig. 3). Surprisingly, our generated cap-
tions match or outperform humans on 12 out of 14 official metrics. We also
outperform other public results on all official metrics. When evaluated by
human subjects, our captions were judged to be of the same or better quality
than humans 34% of the time. Our results demonstrate the utility of training
both visual detectors and LMs directly on image captions, as well as using
a global semantic model for re-ranking the caption candidates.

This is an extended abstract. Full paper available at the Computer Vision Foundation page.
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Figure 2: Qualitative results for several randomly chosen images on the
MS COCO dataset, with our generated caption (black) and a human caption
(blue) for each image. Top rows also show MIL based localization. More
examples can be found on the project website: http://research.
microsoft.com/image_captioning.
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Figure 3: COCO evaluation server results on test set (40,775 images). First
row show results using 5 reference captions, second row, 40 references. Hu-
man results reported in parentheses.
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