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Abstract In this paper, we address the problems of

contour detection, bottom-up grouping, object detec-

tion and semantic segmentation on RGB-D data. We fo-

cus on the challenging setting of cluttered indoor scenes,

and evaluate our approach on the recently introduced

NYU-Depth V2 (NYUD2) dataset [45].

We propose algorithms for object boundary detec-

tion and hierarchical segmentation that generalize the

gPb − ucm approach of [3] by making effective use of

depth information. We show that our system can label

each contour with its type (depth, normal or albedo).

We also propose a generic method for long-range amodal

completion of surfaces and show its effectiveness in group-

ing.

We train RGB-D object detectors by analyzing and

computing Histogram of Oriented Gradients (HOG) on

the depth image and using them with deformable part

models (DPM) [16]. We observe that this simple strat-

egy for training object detectors significantly outper-

forms more complicated models in the literature.

We then turn to the problem of semantic segmen-

tation for which we propose an approach that classifies

superpixels into the dominant object categories in the

NYUD2 dataset. We design generic and class-specific

features to encode the appearance and geometry of ob-

jects. We also show that additional features computed

from RGB-D object detectors and scene classifiers fur-

ther improves semantic segmentation accuracy. In all
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of these tasks, we report significant improvements over
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1 Introduction

The problem of scene and image understanding from

monocular images has been studied very well in re-

cent years [18,21,22,34,35,43]. Some works have ad-

dressed the task of inferring coarse 3D layout of out-

door scenes, exploiting appearance and geometric in-

formation [22,43]. Recently, the focus has shifted to-

wards the more difficult case of cluttered indoor scenes

[19,21,34,35]. In this context, the notion of affordance

and the functionality of objects for human use acquires

importance. Thus, [21] recovers walk-able surfaces by

reasoning on the location and shape of furniture, [34,

35] reason about the 3D geometry of the room and ob-

jects, while [19] focuses on interpreting the scene in a

human-centric perspective.

Another major line of work has been object detec-

tion. Most notable among them is the work in the slid-

ing window paradigm one of the first example being

Viola and Jones [47], which considered the task of face

detection, Dalal and Triggs [11], which proposed and

benchmarked various feature choices for use with sliding

window detectors, and more recent works [5,16] which

extends the sliding window approaches to reason about

parts and their relative arrangements. Notably, Felzen-

szwalb et al .’s deformable part models (DPM) [16], is

the widely accepted state-of-the-art method for object

detection.
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Fig. 1: Output of our system: We take in as input a single color and depth image ((a) and (b)) and produce as

output a bottom-up segmentation (c), long range completions (d), contour classification (e) (into depth disconti-

nuities (red), concave normal discontinuities (green) and convex normal discontinuities (blue)), object detections

(f), and a semantic segmentation (g).

With the recent introduction of a commodity depth

sensor (like the Microsoft Kinect), a new area of re-

search has opened up in computer vision of looking at

tasks which have traditionally been very hard. For ex-

ample, recent works have considered 3D reconstruction

tasks such as real-time scene reconstruction [24], and

recovering high fidelity albedo, shape and illumination

[4].

There has also been a lot of work on semantic un-

derstanding of images given RGB-D input from a depth

sensor. A particularly striking first work among this is

that of real-time human pose estimation from single

RGB-D images [44], in which they demonstrate that

with the availability of RGB-D input they can solve the

hard problem of human joint localization well enough to

be used in a practical application. Subsequently, there

have been numerous papers in both robotics and vision

communities looking at various image and scene un-

derstanding problems namely, bottom-up segmentation

[12,38,45], semantic segmentation [7,29,39,45], and ob-

ject detection [25,28,32,46,48].

In this paper we tackle all these 3 tasks - bottom-up

segmentation, object detection and semantic segmen-

tation for indoor RGB-D images. The output of our

approach is shown in Figure 1: given a single RGB-

D image ((a) and (b)), our system produces contour

detection, bottom-up segmentation ((c)), contour clas-

sification ((d)), grouping by amodal completion ((e)),

object detection ((f)) and semantic labeling of objects

and scene surfaces ((g)).

This is an extended version of the work that ap-

peared in [20]. It differs from [20], in that we also inves-

tigate the problem of RGB-D detection, and show that

incorporating additional features from object detector

activations further improves the semantic segmentation

accuracy.

This paper is organized as follows: we review re-

lated work in Section 2. We describe our algorithm and

results for perceptual re-organization (bottom-up seg-

mentation and amodal completion) in Section 3. We

then describe how we train RGB-D object detectors and

compare them with existing methods in the literature

in Section 4. We then describe our system for semantic

segmentation in Section 5. Finally, we use the output

from our object detectors and scene classifiers for the

task of semantic segmentation, and show how this addi-

tional knowledge can help us improve the performance

of our semantic segmentation system in Section 6.

2 Related Work

2.1 Bottom-Up and Semantic Segmentation

One of the first attempts at bottom-up and semantic

segmentation is that of Silberman et al . [45], in which

they consider the task of bottom-up RGB-D segmen-

tation and semantic scene labeling, by modifying the

algorithm of [23] to use depth for bottom-up segmenta-

tion and then using context features derived from infer-

ring support relationships in the scene for performing

semantic segmentation. Ren et al .’s work [39] uses fea-

tures based on kernel descriptors on superpixels and

their ancestors from a region hierarchy, followed by a

Markov Random Field (MRF) context model. Koppula

et al . [29] also study the problem of indoor scene pars-

ing with RGB-D data in the context of mobile robotics,

where multiple views of the scene are acquired with

a Kinect sensor and subsequently merged into a full

3D reconstruction. The full 3D point cloud is over-

segmented and used as underlying structure for an MRF

model. A rich set of features is defined, describing local

appearance, shape and geometry, and contextual rela-

tionships among object classes. A max-margin formu-

lation is proposed to learn the model parameters and

inference is performed via LP relaxation.

Our work differs from the references above in both

our approach to segmentation and to recognition. We

visit the segmentation problem afresh by extending the

gPb-ucm [3] machinery to leverage depth information,

giving us significantly better bottom-up segmentation
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when compared to earlier works. We also consider the

interesting problem of amodal completion [27] and ob-

tain long range groups, which gives us better bottom-up

region proposals for scene surfaces which are often in-

terrupted by objects in front of them. Finally, we are

also able to label each edge as being a depth edge, a

normal edge, or neither.

Our approach for recognition builds on insights from

the performance of different methods on the PASCAL

VOC segmentation challenge [14]. We observe that ap-

proaches like [2,8,9], which focus on classifying bottom-

up region candidates using strong features on the region

have obtained significantly better results than MRF-

based methods [30]. Based on this motivation, we pro-

pose new features to represent bottom-up region pro-

posals (which in our case are non-overlapping super-

pixels and their amodal completion), and use additive

kernel SVM classifiers.

2.2 Object Detection

For object detection, from a robotics perspective, Lai

et al . collect a dataset of day-to-day objects, and pro-

pose novel kernel descriptor features to recognize these

objects [31,32]. We study the same problem, but con-

sider it in uncontrolled and cluttered real world scenes,

and develop techniques which can generalize across in-

stances of the same category. Moreover, we are more

interested in the problem of detecting large furniture

like items. Johnson et al ., Rusu et al . and Frome et

al . look at computing features for describing points in

point cloud data [17,26,40], but in this work we want

to design features for complete objects. [25] also con-

sider the task of object detection in RGB-D settings,

and propose modifications to the approach of [16], and

re-scoring and pruning detections to improve detection

accuracy. In more recent work [28], propose modifica-

tions to DPMs to reason in 3D and take into account

bottom-up grouping cues, and show improvements over

the approach of [25]. [46] also look at the task of object

detection and work in the same framework, but do not

reason about perspective in their calculations for depth

image gradients. [48] also look at the same task but

compute features on the surface normal images. Our

work is more similar to that of [46,48], but we differ in

the features that we use, and observe that even a sim-

ple model with the right features can outperform more

complicated approaches.

3 Perceptual Organization

One of our main goals is to perform perceptual orga-

nization on RGB-D images. We would like an algo-

rithm that detects contours and produces a hierarchy

of bottom-up segmentations from which we can extract

superpixels at any granularity. We would also like a

generic machinery that can be trained to detect object

boundaries, but that can also be used to detect differ-

ent types of geometric contours by leveraging the depth

information. In order to design such a depth-aware per-

ceptual organization system, we build on the architec-

ture of the gPb− ucm algorithm [3], which is a widely

used software for monocular image segmentation.

3.1 Geometric Contour Cues

In addition to color data, we have, at each image pixel,

an estimation of its 3D location in the scene from which

we can infer its surface normal orientation. We use this

local geometric information to compute three oriented

contour signals at each pixel in the image: a depth gra-

dient DG which identifies the presence of a disconti-

nuity in depth, a convex normal gradient NG+ which

captures if the surface bends-out at a given point in a

given direction, and a concave normal gradient NG−,

capturing if the surface bends-in.

Generalizing the color and texture gradients of gPb

to RGB-D images in not a trivial task because of the

characteristics of the data, particularly: (1) a nonlin-

ear noise model of the form |δZ| ∝ Z2|δd|, where δZ is

the error in depth observation, Z is the actual depth,

δd is the error in disparity observation (due to the

triangulation-based nature of the Kinect), causing non-

stochastic and systematic quantization of the depth,

(2) lack of temporal synchronization between color and

depth channels, resulting in misalignment in the dataset

being used, (3) missing depth observations. We address

these issues by carefully designing geometric contour

cues that have a clear physical interpretation, using

multiple sizes for the window of analysis, not interpolat-

ing for missing depth information, estimating normals

by least square fits to disparity instead of points in the

point cloud, and independently smoothing the orienta-

tion channels with Savitsky-Golay [42] parabolic fitting.

In order to estimate the local geometric contour

cues, we consider a disk centered at each image location.

We split the disk into two halves at a pre-defined ori-

entation and compare the information in the two disk-

halves, as suggested originally in [37] for contour de-

tection in monocular images. In the experiments, we

consider 4 different disk radii varying from 5 to 20 pix-

els and 8 orientations. We compute the 3 local geomet-
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ric gradients DG, NG+ and NG− by examining the

point cloud in the 2 oriented half-disks. We first repre-

sent the distribution of points on each half-disk with a

planar model. Then, for DG we calculate the distance

between the two planes at the disk center and for NG+

and NG− we calculate the angle between the normals

of the planes.

3.2 Contour Detection and Segmentation

We formulate contour detection as a binary pixel clas-

sification problem where the goal is to separate con-

tour from non-contour pixels, an approach commonly

adopted in the literature [3,23,37]. We learn classifiers

for each orientation channel independently and com-

bine their final outputs, rather than training one single

classifier for all contours.

Contour Locations We first consider the aver-

age of all local contour cues in each orientation and

form a combined gradient by taking the maximum re-

sponse across orientations. We then compute the water-

shed transform of the combined gradient and declare

all pixels on the watershed lines as possible contour

locations. Since the combined gradient is constructed

with contours from all the cues, the watershed over-

segmentation guarantees full recall for the contour loca-

tions. We then separate all the boundary location can-

didates by orientation.

Labels We transfer the labels from ground-truth

manual annotations to the candidate locations for each

orientation channel independently. We first identify the

ground-truth contours in a given orientation, and then

declare as positives the candidate contour pixels in the

same orientation within a distance tolerance. The re-

maining boundary location candidates in the same ori-

entation are declared negatives.

Features For each orientation, we consider as fea-

tures our geometric cues DG, NG+ and NG− at 4

scales, and the monocular cues from gPb: BG, CG and

TG at their 3 default scales. We also consider three ad-

ditional cues: the depth of the pixel, a spectral gradient

[3] obtained by globalizing the combined local gradient

via spectral graph partitioning, and the length of the

oriented contour.

Oriented Contour Detectors We use as classi-

fiers support vector machines (SVMs) with additive ker-

nels [36], which allow learning nonlinear decision bound-

aries with an efficiency close to linear SVMs, and use

their probabilistic output as the strength of our oriented

contour detectors.

Hierarchical Segmentation Finally, we use the

generic machinery of [3] to construct a hierarchy of

segmentations, by merging regions of the initial over-

segmentation based on the average strength of our ori-

ented contour detectors.

3.3 Amodal Completion

The hierarchical segmentation obtained thus far only

groups regions which are continuous in 2D image space.

However, surfaces which are continuous in 3D space can

be fragmented into smaller pieces because of occlusion.

Common examples are floors, table tops and counter

tops, which often get fragmented into small superpixels

because of objects resting on them.

In monocular images, the only low-level signal that

can be used to do this long-range grouping is color and

texture continuity which is often unreliable in the pres-

ence of spatially varying illumination. However, in our

case with access to 3D data, we can use the more robust

and invariant geometrical continuity to do long-range

grouping. We operationalize this idea as follows:

1. Estimate low dimensional parametric geometric mod-

els for individual superpixels obtained from the hi-

erarchical segmentation.

2. Greedily merge superpixels into bigger more com-

plete regions based on the agreement among the

parametric geometric fits, and re-estimate the ge-

ometric model.

In the context of indoor scenes we use planes as our low

dimensional geometric primitive. As a measure of the

agreement we use the (1) orientation (angle between

normals to planar approximation to the 2 superpixels)

and (2) residual error (symmetrized average distance

between points on one superpixel from the plane de-

fined by the other superpixel); and use a linear func-

tion of these 2 features to determine which superpixels

to merge.

As an output of this greedy merging, we get a set

of non-overlapping regions which consists of both long

and short range completions of the base superpixels.

3.4 Results

We train and test our oriented contour detectors using

the instance level boundary annotations of the NYUD2

as the ground-truth labels. We follow the standard train-

test splits of NYUD2 dataset with 795 training images

and 654 testing images (these splits make sure that im-

ages from the same scene are either entirely in the test

set or entirely in the train set).
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We evaluate performance using the standard bench-

marks of the Berkeley Segmentation Dataset [3]: preci-

sion and recall on boundaries and Ground Truth Cov-

ering of regions. We consider two natural baselines for

bottom-up segmentation: the algorithm gPb−ucm, which

does not have access to depth information, and the ap-

proach of [45], made available by the authors (labeled

NYUD2 baseline), which produces a small set (5) of

nested segmentations using color and depth.

Figure 2 and Table 1 1 present the results. Our

depth-aware segmentation system produces contours of

far higher accuracy than gPb−ucm, improving the Av-

erage Precision (AP) from 0.55 to 0.70 and the maximal

F-measure (ODS in Table 1 - left) from 0.62 to 0.69. In

terms of region quality, the improvement is also signifi-

cant, increasing the best ground truth covering of a sin-

gle level in the hierarchy (ODS in Table 1 - right) from

0.55 to 0.62, and the quality of the best segments across

the hierarchy from 0.69 to 0.75. Thus, on average, for

each ground truth object mask in the image, there is one

region in the hierarchy that overlaps 75% with it. The

comparison against the NYUD2 baseline, which has ac-

cess to depth information, is also largely favorable for

our approach. In all the benchmarks, the performance

of the NYUD2 baseline lies between gPb−ucm and our

algorithm.

In [45], only the coarsest level of the NYUD2 base-

line is used as spatial support to instantiate a prob-

abilistic model for semantic segmentation. However, a

drawback of choosing one single level of superpixels in

later applications is that it inevitably leads to over- or

under-segmentation. Table 2 compares in detail this de-

sign choice against our amodal completion approach. A

first observation is that our base superpixels are finer

than the NYUD2 ones: we obtain a larger number and

our ground truth covering is lower (from 0.61 to 0.58),

indicating higher over-segmentation in our superpixels.

The boundary benchmark confirms this observation, as

our F-measure is slightly lower, but with higher Recall

and lower Precision.

The last row of Table 2 provides empirical support

for our amodal completion strategy: by augmenting our

fine superpixels with a small set of amodally completed

regions (6 on average), we preserve the boundary Recall

of the underlying over-segmentation while improving

the quality of the regions significantly, increasing the

bestC score from 0.58 to 0.63. The significance of this

jump can be judged by comparison with the ODS score

of the full hierarchy (Table 1 - right), which is 0.62: no

1 ODS refers to optimal dataset scale, OIS refers to optimal
image scale, bestC is the average overlap of the best segment
in the segmentation hierarchy to each ground truth region.
We refer the reader to [3] for more details about these metrics.

Fig. 2: Boundary Benchmark on NYUD2: Our

approach (red) significantly outperforms baselines

[3](black) and [45](blue).

Boundary Benchmark Region Benchmark

ODS OIS AP ODS OIS bestC

gPb-ucm 0.62 0.65 0.55 0.55 0.60 0.69

NYUD2 hierarchy 0.65 0.65 − 0.61 0.61 0.63

Our hierarchy 0.69 0.71 0.70 0.62 0.67 0.75

Table 1: Segmentation benchmarks for hierarchical seg-

mentation on NYUD2. See Footnote 1 for explanation

of ODS, OIS, bestC.

Rec Prec F-meas bestC Total

NYUD2 superpixels 0.78 0.55 0.65 0.61 87

Our superpixels 0.86 0.51 0.64 0.58 144

Our amodal completion 0.86 0.51 0.64 0.63 150

Table 2: Segmentation benchmarks for superpixels on

NYUD2. See Footnote 1 for explanation of bestC.

single level in the full hierarchy would produce better

regions than our amodally completed superpixels.

Our use of our depth-aware contour cues DG, NG+,

and NG−, is further justified because it allows us to

also infer the type for each boundary, whether it is an

depth edge, concave edge, convex edge or an albedo

edge. We simply average the strengths across the dif-

ferent scales for each of these channels, and threshold

them appropriately to obtain labels for each contour.

We show some qualitative examples of the output we

get in the last column of Figure 3 (5th column).
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4 RGB-D Detector

Given access to point cloud data, it is natural to think of

a 3D model which scans a 3D volume in space and rea-

sons about parts and deformations in 3D space. While

it is appealing to have such a model, we argue that

this choice between a 3D scanning volume detector and

a 2D scanning window detector only changes the way

computation is organized, and that the same 3D rea-

soning can be done in windows extracted from the 2D

image. For example, this reasoning can be in the form

of better 3D aware features that can be computed from

the points in the support of the 2D sliding window. Not

only does this approach deal with the issue of computa-

tional complexity, but also readily allows us to extend

existing methods in computer vision to RGB-D data.

Hence, we generalize the Deformable Parts Model

detector from Felzenszwalb et al . [16] to RGB-D images

by computing additional features channels on the depth

image. We adopt the paradigm of having a multi-scale

scanning window detector, computing features from or-

ganized spatial cells in the detector support, and learn-

ing a model which has deformable parts.

4.1 Features

Note that our sliding window detector searches over

scale, so when we are thinking of the features we can as-

sume that the window of analysis has been normalized

for scale variations. In addition to the HOG features

to capture appearance we use the following features to

encode the shape information from the depth image.

4.1.1 Histogram of Depth Gradients

In past work which studied the task of adapting 2D ob-

ject detectors to RGB-D data [25,46], a popular choice

is to simply extend the histogram of oriented gradi-

ents (HOG) used on color images to depth images. One

would think that this primarily captures depth discon-

tinuities and object boundaries. However as we show in

Appendix B, the histogram of depth gradients actually

captures the orientation of the surface and not just the

depth discontinuities. Very briefly, the gradient orien-

tation at a point is along the direction in which the

surface is receding away from the viewer (the tilt), and

the gradient magnitude captures the rate at which the

surface is receding away (or the slant of the surface).

Note that when the surface is more or less parallel to

the viewing plane, then the estimate for the gradient

orientation is inaccurate, and thus the contribution of

such points should be down-weighed, and this is pre-

cisely what happens when we accumulate the gradient

magnitude over different orientations.

The final step in HOG computation involves con-

trast normalization. We stick with this step, as it makes

the feature vector around depth discontinuities (where

the surface recedes very sharply) in the same range as

the the feature vector around non-depth discontinuity

areas.

With this contrast normalization step, it turns out

that the histogram of depth gradients is very similar to

the histogram of disparity gradients (the gradient ori-

entation is exactly the same, the gradient magnitude

are somewhat different, but this difference essentially

goes away due to contrast normalization, the complete

justification of this is given in Appendix B). In all our

experiments we use HHG, histogram of oriented hori-

zontal disparity gradients, as this has better error prop-

erties than histogram of depth gradients (since a stereo

sensor actually measures disparity and not depth).

4.1.2 Histogram of Height

As we show in Appendix A, we can estimate the direc-

tion for gravity and estimate the absolute height above

the ground plane for each point. We use this estimate

of height, to compute a histogram capturing the distri-

bution of heights of the points in each cell. We use the

L2 normalized square root of the counts in each bin as

features for each cell. We call this feature HH.

4.2 Results

In this section, we validate empirically our design choices

and compare our results to related work We report ex-

periments on NYUD2 and B3DO.

Performance on NYUD2: The NYUD2 dataset was

originally proposed to study bottom-up segmentation,

semantic segmentation and support surface inference

[45]. However, since it provides dense pixel labels for

each object instance, we can easily derive bounding box

annotations (by putting a tight bounding box around

each instance) and study the task of object detection.

Since, we are interested in investigating the task

of detecting furniture like objects in indoor scenes, we

select the following five most common (by number of

pixels) furniture categories in the dataset - bed, chair,

sofa, counter, and table (we exclude cabinets because

they are more a part of the scene rather than being

a furniture item). For the sake of comparison to past

and future work we also include all categories studied

by [48], and all categories that are part of the RMRC

challenge [1].
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We follow the same standard train and test sets (of

795 and 654 images respectively as explained in Sect

3). We found that training with multiple components

did not improve performance given the small amount

of data.

We follow the standard PASCAL [15] metric of av-

erage precision (AP) for measuring detection perfor-

mance. We report the performance that we obtain in

Table 3.

We compare against the state of the art appearance

only method [16] and other approaches which make use

of depth information [48]. We also compare against the

output of our semantic segmentation system as pro-

posed in [20]. We compute bounding box predictions

for a class c from the semantic segmentation output by

putting a tight bounding box around each connected

component of pixels belonging to class c, and assigning

each such box a score based on the confidence score for

class c of pixels within the box (note that the semantic

segmentation output does not have instance informa-

tion and the tightest bounding box around a connected

component often includes multiple instances). We ob-

serve that we are able to consistently outperform the

baselines. We provide some qualitative visualizations

for our bed, chair, sofa, table and counter detections in

Figure 3 (6th column).

Performance on B3DO: The B3DO dataset considers

the task of detecting mostly small ‘prop-like’ objects

which includes bottle, bowls, cups, keyboards, moni-

tors, computer mouse, phones, pillows and a larger fur-

niture object, chair, and provides 2D bounding box an-

notations for objects of these categories. For this dataset,

we only use the HHG and HOG features and do not

use the HH features since the gravity estimate fails be-

cause there are a lot of images where the camera is not

roughly horizontal (like when over looking the top of a

table).

We follow the standard evaluation protocol of train-

ing on the 6 train sets and testing on the 6 correspond-

ing validation sets, and reporting the average AP ob-

tained for each category. We report the performance

in Table 4. We compare against the approach of [28],

who also studied the same task of object detection in

RGB-D images.

Although, we designed our model and features with

large furniture like objects in mind, we see that our

approach works reasonably well, on this task and we

get competitive performance even on small ‘prop-like’

objects. We consistently outperform past approaches

which have studied this task in the past.

DPM [16] segToDet Ye et al. Our

(CVPR13[20]) [48]

bed 27.6 52.1 37.5 56.0

chair 7.8 6.4 15.1 23.5

sofa 9.4 17.5 15.5 34.2

counter 7.3 32.7 16.4 24.0

lamp 22.2 1.4 23.4 26.7

pillow 4.3 3.3 16.9 20.7

sink 5.9 14.0 23.0 22.8

garbage-bin 6.6 - 16.4 26.7

table 5.5 9.3 - 17.2

bathtub 0.9 28.4 - 19.3

television 5.8 3.1 - 19.5

bookshelf 9.0 6.7 - 17.5

toilet 34.4 13.3 - 45.1

box 0.1 0.7 - 0.6

desk 0.7 0.8 - 6.2

door 2.5 5.0 - 9.5

dresser 1.4 13.3 - 16.4

monitor 10.0 - - 34.9

night-stand 9.2 - - 32.6

mean over 9.0 - - 23.9

19 categories

mean over 12.1 18.2 21.1 29.7

common categories

Table 3: Performance on NYUD2 [45]: We use

the standard PASCAL [15] metric of average precision

(AP) for measuring detection performance. We com-

pare against an appearance only baseline [16], putting

bounding boxes around semantic segmentation pro-

duced by our approach in [20], and the publicly reported

performance numbers of [48]. Note that the semantic

segmentation output from [20] does not give instance

labels.

DPM Janoch Janoch

[16] [25]-Prn [25]-Rscr [28] Our

bottle 10.1 10.4 10.1 10.1 21.9

bowl 37.8 38.8 38.0 45.4 47.8

chair 16.8 21.8 23.0 17.1 39.9

cup 30.9 33.6 35.6 38.3 47.0

keyboard 22.3 24.2 25.0 25.6 25.7

monitor 66.8 64.8 66.7 68.2 64.9

mouse 22.8 25.2 27.6 25.4 48.8

phone 18.0 19.2 19.7 19.8 19.4

mean 28.2 29.7 30.7 31.2 39.4

Table 4: Performance on B3DO: Comparison with

[25], [28] on B3DO dataset.

Ablation Study: Here we study the impact of each of

our features towards the performance of our proposed

detector. We do an ablation study by removing each

component of our detector. We do this analysis on the

train set of the NYUD2 dataset. We split the train set

into 2 halves and train on one and report performance

on the other. We report the ablation study in Table 5.

We see that all features contribute to the perfor-

mance. The most important features are HOG on the

appearance image and Histogram of Disparity Gradient

features.
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full no hhg no hh no hog # Train # Val

chair 22.5 19.6 22.6 20.4 547 611

pillow 21.1 8.15 18.9 21.4 266 276

table 14.2 9.06 11.2 11.7 186 211

box 0.498 0.466 0.217 0.225 163 210

sofa 28.4 16.1 19.8 25.6 117 129

door 4.68 6.33 2.72 1.86 136 129

lamp 25.9 16.7 26 25 123 143

counter 14.9 7.28 11.7 14.3 130 104

desk 2.34 1.64 1.78 2.09 59 122

bed 56.6 45.3 51.5 57 94 96

bookshelf 6.3 4.1 5.02 2.69 46 87

sink 36.1 12.1 28.7 30.7 63 47

monitor 27.6 21.8 29.4 8.62 40 37

night-stand 16.5 16.6 18.3 15.6 45 51

garbage-bin 26.6 13 24.7 15.6 51 55

dresser 23.2 3.03 13.1 9.51 40 25

television 23.5 19.2 24.8 9.41 47 33

toilet 48.3 50.3 50.8 48.3 20 17

bathtub 12.2 11.6 7.73 11.8 15 19

mean 21.7 14.9 19.4 17.5 115 126

Table 5: Ablation Study: See Section 4.2. We remove

the different features from the full detector system and

study how the performance degrades.

To gain further understanding of what the detector

is learning, we provide visualizations of the model and

its various parts in Appendix C.

5 Semantic Segmentation

We now turn to the problem of semantic segmentation

on NYUD2. The task proposed in [45] consists of la-

beling image pixels into just 4 super-ordinate classes

- ground, structure, furniture and props. We study a

more fine-grained 40 class discrimination task, using the

most common classes of NYUD2. These include scene

structure categories like walls, floors, ceiling, windows,

doors; furniture items like beds, chairs, tables, sofa; and

objects like lamps, bags, towels, boxes. The complete

list is given in Table 6.

We leverage the reorganization machinery developed

in Section 3 and approach the semantic segmentation

task by predicting labels for each superpixel. We de-

fine features based on the geocentric pose, shape, size

and appearance of the superpixel and its amodal com-

pletion. We then train classifiers using these features

to obtain a probability of belonging to each class for

each superpixel. We experiment with random decision

tree forests [6,10] (RF), and additive kernel [36] support

vector machines (SVM).

5.1 Features

As noted above, we define features for each superpixel

based on the properties of both the superpixel and its

amodal completion. As we describe below, our features

capture affordances via absolute sizes and heights which

are more meaningful when calculated for the amodal

completion rather than just over the superpixel. Note

that we describe the features below in context of su-

perpixels but we actually calculate them for both the

superpixel and its amodal completion.

5.1.1 Generic Features

Geocentric Pose: These features capture the pose -

orientation and height, of the superpixel relative to the

gravity direction. These features include (1) orientation

features: we leverage our estimate of the gravity direc-

tion from Section A, and use as features, the angle with

respect to gravity, absolute orientation in space, frac-

tion of superpixel that is vertical, fraction of superpixel

that is horizontal, and (2) height above the ground : we

use height above the lowest point in the image as a sur-

rogate for the height from the supporting ground plane

and use as features the minimum and maximum height

above ground, mean and median height of the horizon-

tal part of the superpixel.

Size Features: These features capture the spatial

extent of the superpixel. This includes the size of the

3D bounding rectangle, the surface area - total area,

vertical area, horizontal area facing up, horizontal area

facing down, if the superpixel is clipped by the image

and what fraction of the convex hull is occluded.

Shape Features: These include - planarity of the

superpixel (estimated by the error in the plane fitting),

average strength of local geometric gradients inside the

region, on the boundary of the region and outside the

region, average orientation of patches in the regions

around the superpixel. These features are relatively crude

and can be replaced by richer features such as spin im-

ages [26] or 3D shape contexts [17].

In total, these add up to 101 features each for the

superpixel and its amodal completion.

5.1.2 Category Specific Features

In addition to features above, we train one-versus-rest

SVM classifiers based on appearance and shape of the

superpixel, and use the SVM scores for each category as

features along with the other features mentioned above.

To train these SVMs, we use (1) histograms of vector

quantized color SIFT [41] as the appearance features,

and (2) histograms of geocentric textons (vector quan-

tized words in the joint 2-dimensional space of height

from the ground and local angle with the gravity direc-

tion) as shape features. This makes up for 40 features

each for the superpixel and its amodal completion.
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5.2 Results

With the features as described above we experiment

with 2 different types of classifiers - (1) random forest

classifiers with 40 trees with randomization happening

both across features and training points for each tree

(we use TreeBagger function in MATLAB), (2) SVM

classifiers with additive kernels. At test time, for both

these methods, we get a posterior probability for each

superpixel of belonging to each of the 40 classes and

assign the most probable class to each superpixel.

We use the standard split of NYUD2 with 795 train-

ing set images and 654 test set images for evaluation. To

prevent over-fitting because of retraining on the same

set, we train our category specific SVMs only on half of

the train set.

Performance on the 40 category task We mea-

sure the performance of our algorithm using the Jaccard

index (true predictions divided by union of predictions

and true labels - same as the metric used for evalua-

tion in the PASCAL VOC segmentation task) between

the predicted pixels and ground truth pixels for each

category. As an aggregate measure, we look at the fre-

quency weighted average of the class-wise Jaccard index

(fwavacc), but for completeness also report the average

of the Jaccard index (avacc), and the pixel-level classi-

fication accuracy (pixacc). To understand the quality of

the classifiers for each individual category independent

of calibration, we also compute maxIU, the maximum

intersection over union for all thresholds of the clas-

sifier score for each category individually, and report

their average, and denote this with mean(maxIU).

We report the performance in Table 6 (first 4 rows

in the two tables). As baselines, we use [45]-Structure

Classifier, where we retrain their structure classifiers

for the 40 class task, and [39], where we again retrained

their model for this task on this dataset using code

available on their website2. We observe that we are able

to do well on scene surfaces (walls, floors, ceilings, cab-

inets, counters), and most furniture items (bed, chairs,

sofa). We do poorly on small objects, due to limited

training data and weak shape features (our features are

designed to describe big scene level surfaces and ob-

jects). We also consistently outperform the baselines.

Fig. 3 presents some qualitative examples, more are

provided in the supplemental material.

Ablation Studies In order to gain insights into

how much each type of feature contributes towards the

semantic segmentation task, we conduct an ablation

study by removing parts from the final system. We re-

2 We run their code on NYUD2 with our bottom-up
segmentation hierarchy using the same classifier hyper-
parameters as specified in their code.

port our observations in Table 7. Randomized decision

forests (RF) work slightly better than SVMs when us-

ing only generic or category specific features, but SVMs

are able to more effectively combine information when

using both these sets of features. Using features from

amodal completion also provides some improvement.

[45]-SP: we also retrain our system on the superpix-

els from [45] and obtain better performance than [45]

(36.51) indicating that the gain in performance comes

in from better features and not just from better bottom-

up segmentation. [39] features: we also tried the RGB-D

kernel descriptor features from [39] on our superpixels,

and observe that they do slightly worse than our cate-

gory specific features. We also analyse the importance

of our RGB-D bottom-up segmentation, and report per-

formance of our system when used with RGB based su-

perpixels from Arbelaez et al . [3] (SVM color sp). We

note that an improved bottom-up segmentation boosts

performance of the semantic segmentation task.

Performance on NYUD2 4 category task We

compare our performance with existing results on the

super-ordinate category task as defined in [45] in Table

8. To generate predictions for the super-ordinate cate-

gories, we simply retrain our classifiers to predict the

4 super-ordinate category labels. As before we report

the pixel wise Jaccard index for the different super-

categories. Note that this metric is independent of the

segmentation used for recognition, and measures the

end-to-end performance of the system unlike the metric

originally used by [45] (which measures performance in

terms of accuracy in predictions on superpixels which

vary from segmentation to segmentation). As before,

we report fwavacc, avacc, pixacc and mean(maxIU) ag-

gregate metrics. As baselines, we compare against [45,

39]3.

6 Detectors and Scene Context for Semantic

Segmentation

The features that we proposed in Section 5 try to clas-

sify each superpixel independently and do not reason

about full object information. To address this limita-

tion, we propose augmenting the features for a super-

pixel with additional features computed from activa-

tions of object detectors (which have access to whole

object information), and scene classifiers (which have

access to the whole image). The features from object

detector activations provide the missing top-down infor-

mation and scene classifier outputs provide object scene

3 We thank the authors of [45] for providing us with their
precomputed results. For [39], as before we retrained their
algorithm for the 4 class task.
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(a) Color (b) Normal (c) Contours (d) Amodal Comp (e) Contour Type (f) Obj Det (g) Semantic Segm

Fig. 3: Output of our system: We take in as input a single color and depth image ((a) and (b)) and produce as

output bottom up segmentation (c), long range completion (d), contour classification (e) (into depth discontinuities

(red), concave normal discontinuities (green) and convex normal discontinuities (blue)), object detection (f), and

semantic segmentation (g).
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wall floor cabinet bed chair sofa table door window book picture counter blinds desk shelves

shelf

[45]-SC 60.7 77.8 33.0 40.3 32.4 25.3 21.0 5.9 29.7 22.7 35.7 33.1 40.6 4.7 3.3

[39] 60.0 74.4 37.1 42.3 32.5 28.2 16.6 12.9 27.7 17.3 32.4 38.6 26.5 10.1 6.1

our 66.7 80.0 44.0 53.6 35.4 36.3 26.4 11.9 32.4 19.7 39.3 44.2 41.4 3.7 1.4

our + det(RGB) 67.2 81.0 44.0 54.4 36.5 37.8 23.8 13.7 35.9 18.1 39.8 46.3 42.7 7.4 2.0

our + det 67.4 80.5 41.4 56.4 40.4 44.8 30.0 12.1 34.1 20.5 38.7 50.7 44.7 10.1 1.6

our + scene 67.6 81.2 44.8 57.0 36.7 40.8 28.0 13.0 33.6 19.5 41.2 52.0 44.4 7.1 4.5

our + det + scene 67.9 81.5 45.0 60.1 41.3 47.6 29.5 12.9 34.8 18.1 40.7 51.7 41.2 6.7 5.2

curtain dresser pillow mirror floor clothes ceiling books fridge tele paper towel shower box white

mat vision curtain board

[45]-SC 27.4 13.3 18.9 4.4 7.1 6.5 73.2 5.5 1.4 5.7 12.7 0.1 3.6 0.1 0.0

[39] 27.6 7.0 19.7 17.9 20.1 9.5 53.9 14.8 1.9 18.6 11.7 12.6 5.4 3.3 0.2

our 26.3 19.1 29.5 17.3 25.8 10.1 62.3 5.3 12.3 5.2 11.4 20.2 5.5 2.1 11.1

our + det(RGB) 28.9 22.6 29.0 13.2 28.7 8.5 61.2 1.9 10.5 8.5 13.8 18.5 4.3 2.1 11.8

our + det 26.3 21.6 31.3 14.6 28.2 8.0 61.8 5.8 14.5 14.4 14.1 19.8 6.0 1.1 12.9

our + scene 28.6 24.3 30.3 23.1 26.8 7.4 61.1 5.5 16.2 4.8 15.1 25.9 9.7 2.1 11.6

our + det + Scene 26.9 25.0 32.8 21.2 30.7 7.7 61.2 7.5 11.8 15.8 14.7 20.0 4.2 1.1 10.9

person night toilet sink lamp bathtub bag other other other fwavacc avacc mean pixacc avacc*

stand str furntr prop (maxIU)

[45]-SC 6.6 6.3 26.7 25.1 15.9 0.0 0.0 6.4 3.8 22.4 38.2 19.0 - 54.6 17.5

[39] 13.6 9.2 35.2 28.9 14.2 7.8 1.2 5.7 5.5 9.7 37.6 20.5 21.4 49.3 20.2

our 0.0 17.3 45.3 31.6 19.7 30.3 0.0 4.2 1.8 22.8 43.4 24.3 27.9 57.9 25.4

our + det(RGB) 4.4 10.2 56.4 33.1 19.6 12.3 0.2 1.8 1.0 23.1 43.9 24.4 28.3 57.0 25.4

our + det 1.5 15.7 52.5 47.9 31.2 29.4 0.2 6.4 2.1 21.5 44.9 26.5 29.2 58.9 30.0

our + scene 5.0 21.5 46.5 35.7 16.3 31.1 0.0 7.9 5.7 22.7 45.2 26.4 29.1 59.1 27.5

our + det + scene 1.4 17.9 48.1 45.1 31.1 19.1 0.0 7.6 3.8 22.6 45.9 26.8 30.7 58.3 29.6

Table 6: Performance on the 40 class task: We report the pixel-wise Jaccard index for each of the 40 categories.

We compare against 2 baselines (row 1 and row 2). our is the version of our system as introduced in Section 5

with additive kernel SVM as classifier. our+det(RGB) is the version of our system which uses features from RGB

object detector activations as described in Section 6.1, our+det is the version of our system which uses features

from RGB-D object detector activations as described in Section 6.1, our+scene is the version of our system which

uses ‘scene-context’ features as described in Section 6.2, and finally out+scene+det is the system with both ‘scene

context’ features and RGB-D object detector activation based feature. Categories for which we added detectors

are shaded in gray (avacc* is the average for categories for which we added detectors).

full only only only only no [39]

generic category geom app amodal [45]-SP features

SVM 42.06 35.51 38.69 37.55 31.8 41.17 41.19 36.68

RF 39.4 36.09 39.14 35.08 30.62 39.07 39.92 -

SVM (color sp) 38.45 32.09 35.68 34.92 28.81 37.93 - -

Table 7: Ablation study on half of the train set: All components of our semantic segmentation system

contribute to the performance. See text for details.

context information (of the form that night stands oc-

cur more frequently in bedrooms than in living rooms).

In this section, we describe how we compute these fea-

tures and show experimental results which illustrate

that adding these features helps improve performance

for the semantic segmentation task. Figure 4 shows ex-

amples of the error modes that get fixed on using these

additional features.

6.1 Detector Activations Features

We compute the output of the RGB-D detector that

we trained in Section 4, and do the standard DPM

non-max suppression. Then, for each class we pick a

threshold for the score of the detector such that the

detector obtains a precision of p(= 0.50) on the valida-

tion set. We then prune away all detections which have

a score smaller than this threshold. We use the remain-

ing detections to compute features for each superpixel.

We can see this pruning as introducing a non-linearity

on the detection scores, allowing the classifier to use

information from the good detections more effectively

and not getting influenced by the bad detections which

are not as informative.

For each superpixel, for each category for which

we have a detector, we compute all detections whose
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floor structure furniture prop fwavacc avacc mean pixacc

(maxIU)

[45]-SC 79.5 66.2 51.9 27.1 56.3 56.2 - 71.9

[45]-LP 65.5 65.9 49.9 24 53.4 51.3 - 70

[39] 75 69 54 35 59 58 - 73

our 80.8 72.6 63.1 37.5 64.5 63.5 64.1 77.8

our + det(RGB) 81.0 72.5 62.9 37.5 64.4 63.5 63.9 77.9

our + det 80.9 73.6 64.1 38.0 65.3 64.1 64.6 78.4

our + scene 81.1 72.9 62.9 36.8 64.4 63.4 64.1 78.0

our + det + scene 81.1 74.0 64.0 38.5 65.5 64.4 64.7 78.1

Table 8: Performance on the 4 class task: Comparison with [45,39] on the 4 super-ordinate categories task.

We report the pixel-wise Jaccard index for 4 categories, and 3 aggregate metrics: avg - average Jaccard index,

fwavacc - pixel-frequency weighted average Jaccard index, mean(maxIU) - average of maxIU for each category,

and pixacc - pixel accuracy. [45]-SC is the output of the [45]’s structure classifier, [45]-LP is the output obtained

after solving the linear program for support inference in [45]3. See caption from Table 6 for description of last four

lines in the Table.

bounding box overlaps with the bounding box of the su-

perpixel. Among these detections, we pick the detection

with maximum overlap, and then compute the following

features between the superpixel and the picked detec-

tion: score of the detection selected, overlap between

the detector and superpixel bounding boxes, mean and

median depth in the detector box and the superpixel.

With these additional features, we train the same

superpixel classifiers that we trained in Section 5. We

report the performance we get in Tables 6 and 8. our +

det(RGB) corresponds to when we use RGB DPMs to

compute these features and our + det corresponds to

when we use our proposed RGB-D DPM detectors. We

observe very little improvement when using RGB DPMs

but a large improvement when using RGB-D DPMs,

for which we see improvement in performance across

all aggregate metrics and for most of the categories for

which we added object detectors (these categories are

shaded in gray).

6.2 Scene Classifier Features

We use the scene label annotations provided in the

NYUD2 dataset (we only consider the most common

9 scene categories and map the remaining into a class

‘other’), to train a scene classifier. To train these scene

classifiers, we use features computed by average pooling

the prediction for each of the 40 classes in a 1, 2×2, 4×4

spatial pyramid [33], and training an additive kernel

SVM. We find that these features perform comparable

to the other baseline features that we tried Appendix

D.

We then use these scene classifiers to compute addi-

tional features for superpixels in the image and train the

same superpixel classifiers that we trained in Section 5.

We report the performance we get in Tables 6 and 8

Fig. 4: Examples illustrating where object detec-

tors and scene classification help: Semantic seg-

mentation output improves as we add features from

object detector activations and scene classifiers (going

from left image to right image).

(our + scene). We observe that there is a consistent

improvement which is comparable to the improvement

that we get when using detector activation features. As

a final experiment, we use both scene classifier features

and object detector activation feature and see a further

improvement in performance.

7 Conclusion

We have developed a set of algorithmic tools for percep-

tual organization and recognition in indoor scenes from

RGB-D data. Our system produces contour detection,

hierarchical segmentation, grouping by amodal comple-

tion, object detection and semantic labeling of objects

and scene surfaces. We report significant improvements

over the state-of-the-art in all of these tasks.
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Fig. 5: Cumulative

distribution of angle

of the floor with the

estimated gravity di-

rection.

A Extracting a Geocentric Coordinate Frame

We note that the direction of gravity imposes a lot of struc-
ture on how the real world looks (the floor and other sup-
porting surfaces are always horizontal, the walls are always
vertical). Hence, to leverage this structure, we develop a sim-
ple algorithm to determine the direction of gravity.

Note that this differs from the Manhattan World assump-
tion made by, e.g. [19] in the past. The assumption that there
are 3 principal mutually orthogonal directions is not univer-
sally valid. On the other hand the role of the gravity vector
in architectural design is equally important for a hut in Zim-
babwe or an apartment in Manhattan.

Since we have depth data available, we propose a sim-
ple yet robust algorithm to estimate the direction of gravity.
Intuitively, the algorithm tries to find the direction which is
the most aligned to or most orthogonal to locally estimated
surface normal directions at as many points as possible. The
algorithm starts with an estimate of the gravity vector and
iteratively refines the estimate via the following 2 steps.

1. Using the current estimate of the gravity direction gi−1,
make hard-assignments of local surface normals to aligned
set N‖ and orthogonal set N⊥, (based on a threshold d on
the angle made by the local surface normal with gi−1).
Stack the vectors inN‖ to form a matrixN‖, and similarly
in N⊥ to form N⊥.

N‖ = {n : θ(n, gi−1) < d or θ(n, gi−1) > 180◦ − d}
N⊥ = {n : 90◦ − d < θ(n, gi−1) < 90◦ + d}

where, θ(a, b) = Angle between a and b.

Typically, N‖ would contain normals from points on the
floor and table-tops and N⊥ would contain normals from
points on the walls.

2. Solve for a new estimate of the gravity vector gi which is
as aligned to normals in the aligned set and as orthogo-
nal to the normals in the orthogonal set as possible. This
corresponds to solving the following optimization prob-
lem, which simplifies into finding the eigen-vector with the
smallest eigen value of the 3× 3 matrix, N⊥Nt⊥−N‖Nt‖.

min
g:‖g‖2=1

∑
n∈N⊥

cos2(θ(n, g)) +
∑

n∈N‖

sin2(θ(n, g))

Our initial estimate for the gravity vector g0 is the Y-axis,
and we run 5 iterations with d = 45◦ followed by 5 iterations
with d = 15◦.

To benchmark the accuracy of our gravity direction, we
use the metric of [45]. We rotate the point cloud to align the
Y-axis with the estimated gravity direction and look at the
angle the floor makes with the Y-axis. We show the cumula-
tive distribution of the angle of the floor with the Y-axis in
figure 5. Note that our gravity estimate is within 5◦ of the
actual direction for 90% of the images, and works as well as
the method of [45], while being significantly simpler.

Fig. 7: Root and part filters for the bed. We can see

that the model captures the shape for a bed. Horizontal

lines correspond to horizontal surfaces and the vertical

lines correspond to vertical surface. We can see that the

model learnt a box which we are looking at towards one

of its corners.

B Histogram of Depth Gradients

Suppose we are looking at a planeNXX+NY Y +NZZ+d = 0
in space. A point (X,Y, Z) in the world gets imaged at the

point
(
x = fX

Z
, y = fY

Z

)
, where f is the focal length of the

camera. Using this in the first equation, we get the relation,
NX

Zx
f

+ NY
Zy
f

+ NZZ + d = 0, which simplifies to give

Z = −fd
fNZ+NY y+NXx

. Differentiating this with respect to the

image gradient gives us,

∂Z

∂x
=
NXZ2

df
(1)

∂Z

∂y
=
NY Z2

df
(2)

Using this with the relation that relates disparity δ with
depth value Z, δ = bf

Z
, where b is the baseline for the Kinect,

gives us the derivatives for the disparity δ to be

∂δ

∂x
=
−bNX
d

(3)

∂δ

∂y
=
−bNY
d

(4)

Thus, the gradient orientation for both the disparity and
the depth image comes out to be tan−1(NY

NX
) (although the

contrast is swapped). The gradient magnitude for the depth

image is
Z2
√

1−N2
Z

df
= Z2 sin(θ)

df
, and for the disparity image

is
b
√

1−N2
Z

d
= b sin(θ)

d
, where θ is the angle that the normal

at this point makes with the image plane.
Note that, the gradient magnitude for the disparity and

the depth image differ in that the depth gradient has a factor
of Z2, which makes points further away have a larger gradi-
ent magnitude. This agrees well with the noise model for the
Kinect (quantization of the disparity value, which leads to an
error in Z which value proportional to Z2). In this sense, the
disparity gradient is much better behaved than the gradient
of the depth image.

Note that, the subsequent contrast normalization step in
standard HOG computation, essentially gets rid of this dif-
ference between these 2 quantities (assuming that the close
by cells have more or less comparable Z values).

C Visualization for RGB-D Detector Parts

One interesting thing to visualize is what the DPM is learning
with these features. The question that we want to ask here is
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(a) Bed Parts - Our Features (b) Bed Parts - HOG

(c) Chair Parts - Our Features (d) Chair Parts - HOG

(e) Toilet Parts - Our Features (f) Toilet Parts - HOG

Fig. 6: Visualization for the DPM parts for bed, chairs and toilets

that whether the parts that we get semantically meaningful?
The hope is that with access to depth data, the parts that
get discovered should be more meaningful than ones you get
with purely appearance data.

In Figure 6, we visualize the various DPM parts for the
bed, chair and toilet detector. We run the detector on a set
of images that the detector did not see at train time, pick
the top few detections based on the detector score. We then
crop out the part of the image that a particular part of the
DPM got placed at, and visualize these image patches for the
different DPM parts.

We observe that the parts are tight semantically - that
is, a particular part likes semantically similar regions of the
object class. For comparison, we also provide visualizations
for the parts that get learnt for an appearance only DPM. As
expected, the parts from our DPM are semantically tighter
than the parts from an appearance only DPM. Recently, in
the context of intensity images there has been a lot of work in
trying to get mid-level parts in an unsupervised manner from
weak annotations like that of bounding boxes in intensity im-
ages [13], and in a supervised manner from strong annotations
like that of keypoint annotation [5]. These visualizations sug-
gest that it may be possible to get very reasonable mid-level
parts from weak annotations in RGB-D images, which can be
used to train appearance only part detectors.

We also visualize what the HHG features learn. In Fig-
ure7, we see that the model as expected picks on the shape
cues. There is a flat horizontal surface along the sides and
on the middle portion which corresponds to the floor and the
top of the bed and there are vertical surfaces going from the
horizontal floor to the top of the bed.

D Scene Classification

We address the task of indoor scene classification based on
the idea that a scene can be recognized by identifying the ob-
jects in it. Thus, we use our predicted semantic segmentation
maps as features for this task. We use the spatial pyramid
(SPM) formulation of [33], but instead of using histograms
of vector quantized SIFT descriptors as features, we use the
average presence of each semantic class (as predicted by our
algorithm) in each pyramid cell as our feature.

To evaluate our performance, we use the scene labels pro-
vided by the NYUD2. The dataset has 27 scene categories
but only a few are well represented. Hence, we reduce the
27 categories into 10 categories (9 most common categories
and the rest). As before, we train on the 795 images from the
train set and test on the remaining 654 images. We report the
diagonal of the confusion matrix for each of the scene class
and use the mean of the diagonal, and overall accuracy as
aggregate measures of performance.

We use a 1, 2× 2, 4× 4 spatial pyramid and use a SVM
with an additive kernel as our classifier [36]. We use the 40
category output of our algorithm. We compare against an
appearance-only baseline based on SPM on vector quantized
color SIFT descriptors [41], a geometry-only baseline based
on SPM on geocentric textons (introduced in Section 5.1.2),
and a third baseline which uses both SIFT and Geocentric
Textons in the SPM.

We report the performance we achieve in Table 9.

Acknowledgements We are thankful to Jon Barron, Bharath
Hariharan, and Pulkit Agrawal for the useful discussions.
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SPM on SPM on SPM on SIFT SPM on

SIFT G. Textons + G.Textons Our Output

bedroom 78.0 70.7 80.6 77.5

kitchen 67.9 58.5 73.6 76.4

living room 39.3 32.7 40.2 41.1

bathroom 44.8 56.9 65.5 74.1

dining room 41.8 23.6 45.5 30.9

office 34.2 15.8 34.2 5.3

home office 0.0 8.3 16.7 4.2

classroom 60.9 43.5 60.9 52.2

bookstore 0.0 18.2 0.0 72.7

others 22.0 9.8 31.7 19.5

Mean Diagonal 38.9 33.8 44.9 45.4

Accuracy 53.2 46.2 58.4 55.7

Table 9: Performance on the scene classification

task: We report the diagonal entry of the confusion

matrix for each category; and the mean diagonal of the

confusion matrix and the overall accuracy as aggregate

metrics. ‘G. Textons’ refer to Geocentric Textons intro-

duced in Section 5.1.2.
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